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i. Introduction. The problem of mass transfer for a friction sensor is solved in 

the concentration boundary layer approximation for a fairly broad class of velocity 
profiles. A discussion is presented of the question of determining boundary velocity 
profiles from measurements of limiting diffusion flux. 

In the electrodiffusional (ED) measurement of friction in Newtonian fluids [i], it 
makes no difference how the results are interpreted: in the form of shear stresses at the 

wall r or in the form of the corresponding shear velocities ~. The matter is quite differ- 
ent, however, in the case of ED measurements made in clayey suspensions, polymer solutions, 

and other microscopically disperse liquids [2], since anomalous boundary effects are often 

seen in these instances. From the standpoint of convective diffusion, this difference is 

expressed in the fact that the velocity profiles in the immediate vicinity of the wall can- 

not be assumed to be linear. When analyzing raw data on limiting diffusion currents in 

cases such as these, it is necessary to represent the total current of the sensor I as a 

certain response functional whose arguments are the profile of velocity v x = u(z) inside 

the diffusion layer of the sensor and the length of the sensor along the liquid flow h. 
In light of this, it turns out that simultaneous measurement of the limiting 

diffusion currents for a group of sensors of different lengths is the most effective method 
of employing ED-techniques to study the fine structure of the boundary velocity profile in 

microdisperse liquids [3, 4]. In the present study, we assume that ED-measurements of this 
type have been made for the case in which we use an ED-depolarizer with a known and 

constant diffusion coefficient D. 
The function 6 = 6(h) is known for a certain range of sensor lengths h, where mean 

diffusion thickness 6 is determined from raw test data: 6 = nFc0DA/l (nF is the molar 
charge of the electrochemical reaction, c o is the initial concentration of the depolarizer, 
and A is the area of the sensor). We need to find the operator 6(h) ~ u(z) that transforms 

the data on 6 = 6(h) into information on the boundary profile of velocity u = u(z) (z is 

the distance to the surface of the sensor). 
2. Problem of a Friction Sensor. It is not difficult to formulate a problem whose 

inverse problem is construction of the operator 6(h) ~ u(z). It consists of the solution 

of the parabolic equation 

u (z) c~e = Da~zzc ( 2 . 1  ) 

with boundary conditions for the limiting current on the surface of the sensor: 

Clz=O ---~ 0 f o r  ',(X, y) ~ A ;  ( 2 . 2 )  

the condition of inertia of the walls surrounding the sensor: 

a~c]~=o--O for (x, y )~A . ,  (2.3) 

and the condition expressing the fact that the solution does not become depleted of 

depolarizer: 

C -->- C O for % --->- oo. (2.4) 
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Fig. i. 

The solution of the problem will be the three-dimensional concentration field c = 
c(z; x, y) and the corresponding total current I = nF ~] (x, y)dxdy, where j is the 

A 

local density of the diffusion current flowing to the surface of the sensor j =--D0zC]z= 0. 

The local three-dimensional problem can be considered two-dimensional in the calcula- 

tion of local current densities, since the transverse coordinate is immaterial in the para- 
bolic boundary-value problem being examined (in which we ignore the effect of longitudinal 

and lateral diffusion). The formulation of the two-dimensional problem is evident from 
Fig. I. For an elementary strip h x dy, we can shift the longitudinal coordinate x so that 
its origin coincides on the given boundary streamline (y = const) with the leading edge of 
the sensor. The corresponding two-dimensional problem consists of differential equation 

(2.1) with boundary conditions (2.2), (2.4) on the interval 0 < x < h and initial condition 

c ~ e 0 for x ~ 0 at z > 0 (replacing conditions (2.3) and (2.4) for x < 0). 
We can use the resulting concentration field to determine the local diffusion thick- 

ness a or the local density of the diffusion current flowing tothe wall j: j(x) = --Oazclz=o = Dco/o(z). 
We can then determine the mean density J(h) or mean diffusion thickness 0in) on the ele- 

mentary strip: 
h h 

J (h) = h -1 " ~ ] (x) dx = Dco h-1 ~ a-~ (x) dx = Dco/8 (h). 
0 O 

For a s t r i p - t y p e  f r i c t i o n  s e n s o r ,  m a c r o s c o p i c  mean v a l u e s  o f  J ( h )  and 6(h)  can  be d e t e r -  
mined d i r e c t l y  f rom the  raw d a t a .  

3. S i m i l a r  S o l u t i o n s ,  L o c a l l y  S i m i l a r  A p p r o x i m a t i o n s .  S u b s t i t u t i o n  o f  the  new v a r i -  
a b l e s  c ( z ,  x) = c0F( f ,  a ) ,  f = z / a ( x )  r e d u c e s  the  p rob lem to  the  form 

do da o2 u (o~) OoF; ( 3 1). F" + ~ ~u ( ~ )  ~F' = ~ 

F(0, o) = 0, F ( ~ ,  a ) =  t ,  F'(0, o ) =  t ,  (3 .2 )  

where F" and F" are partial derivatives with respect to f. The problem is ill-conditioned, 

since we lack initial conditions for a ~ 0, i.e., x ~ 0. In such cases, it is customary in 
boundary layer theory to add the condition of local similitude at x ~ 0: 

aoF(~, o) -+ .0  for a-->'O. (3 .3 )  

In general, a locally similar approximation consists of ignoring the term in the 

right side of Eq. (3.1) i.e., of assuming that a~F(~, a) = 0. With this simplification, we 
can obtain an explicit expression for the concentration field 

do * F' F ' ( ~ , o ) = e x p  - - ~  u(at) td t  F ( ~ , a ) =  (s~a) ds 
0 0 

with an implicit integrodifferential equation for the sought diffusion thickness: 
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o r  

F (oo, ~) = t = exp - -  ~ ~ u (~t) t dt ds 
0 0 

y I d l n o  ~ , , 
o = exp zD d ~ J U [ Z l )  z ldz l  dz. 

0 0 

( 3 . 4 a )  

(3.4b) 

In the special case, examined in [3, 4], where the velocity profiles are represented 
by a power function 

u(z) = BzP, 

we c a n  u s e  ( 3 . 4 b )  t o  c o n s t r u c t  t h e  f u n c t i o n  a = o ( x )  i n  i m p l i c i t  f o rm 

(3.5) 

xD = B (2 + p)-2 [~ \2--~1 J 

and we can obtain the corresponding representation for the mean diffusion thickness 

(3.6) 

(h) = t -f- ptY (h~ = t -1- p r {3 @ p] hD] 1/(~+p) v' ,  2 + p-- \2 @ p] [ (2 + p)~ B 
(3.7) 

4. Exact Non-Similar Solutions, Principle of Superposition. The method of local 
similitude (3.4) can be used to find the exact solution only for exponential velocity pro- 
files. In other cases, it is best to solve parabolic problem (3.1)-(3.3) with an unknown 
eigenfunction a = a(x). Calculations of this nature were published in [5] for the general 

linear profile u(z) = U + 7z. The authors also obtained results for the class of profiles 

U(Z) = ZBpZ p for three terms of the sum: O ~ Pl < P2 < P3 ~ 2, B I > O, B 2 ~ O. In all 
cases, the accuracy of the functions a = o(x) was estimated as 5-6 significant digits for o 

in the determination of x. It turned out that the results (to within 3-4 significant 
digits for a) could be reduced to surprisingly simple generalizing conclusions which can be 
represented by the following empirical superposition principle. 

For the class of velocity profiles u = u(z), which are nondecreasing functions, we 
represent the relation x = x(a) in the form of a linear velocity functional with the 

parameter a: 

Dx ---- CD[u(z); ~l ,  r -4- B,ttt(z); q] = Bl@[ul(z); crl -+- B2q)[u~(z); ~ ].  

An example of the usefulness of this conclusion is that, for the class of exponential 
profiles up(z) = BpZ p, we have an explicit representation of functional �9 in the form of Eq. 

(3.6). 
5. Localization of the Functional for Mean Diffusion Thicknesses. We write Eq. 

[l+p ( 3 + P l l  2+p (3.7) in the form B(~6) p = u(a6) = r ~)hD/6 z, where r a) = aP(2 + p)Zt2--~_pF 
, , ~ 2  ~p/j �9 

W i t h  t h e  p a r t i c u l a r  c h o i c e  o f  ~ = 0 . 4 1 4 ,  t h e  v a l u e  o f  r s a t i s f i e s  t h e  c o n d i t i o n  r  
~) = r ~) = 0.785, and for 0 ~ p ~ i we have a nearly constant value 0.78 < r < 0.83. 
As a result, the following empirical formula has been proven valid for the class of 

exponential velocity profiles at 0 S p s 1 

u(z)rz=0,~6 = 0 . S h O / 6  2 . ( 5 .  l )  

I n  a c c o r d a n c e  w i t h  t h i s  f o r m u l a ,  t h e  mean d i f f u s i o n  c u r r e n t  o f  t h e  f r i c t i o n  s e n s o r  d e p e n d s  
on  t h e  l o c a l  v a l u e  o f  v e l o c i t y  a t  t h e  d i s t a n c e  z = 0 . 4 6  t o  t h e  w a l l .  

W i t h i n  t h e  a b o v e - i n d i c a t e d  e r r o r  (•  Eq. ( 5 . 1 )  c a n  be  u s e d  f o r  a more g e n e r a l  
c l a s s  o f  v e l o c i t y  p r o f i l e s .  I n  p a r t i c u l a r ,  t h e  f o l l o w i n g  r e p r e s e n t a t i o n  i s  o b t a i n e d  f rom 
the superposition principle for the linear velocity profile u(z) = U + 7z: 

Dh/o 2 u ~ ( t  + b), 5 ~ t ~ t t  + b)/(l + 0,75b)~ 
4rZ(3/2) -- ~ - 
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where b = 0.497o/U and ~ = a(h), 6 = 6(h). The ratio u(O.46)6Z/(O.8h D) = (i + 0.56b) (I + 

b)/(l + 0.75b) z deviates from unity by no more than 2%. 
6. Conclusions. The superposition principle, employed here for a strip-type sensor, 

remains in force for other types of sensors with the same numerical coefficients. In par- 
ticular, Eq. (5.1) is valid for a circular sensor of radius R if we make the substitution 
h = 1.64R. Equation (5.1) can be regarded as an empirical representation of the inverse 
operator 6(h) ~ u(z) in the problem of the friction sensor. Taking this into account, we 
intepret the power representation of velocity profile (3.5) as follows: 

d l n u  d lnh  
P = ~ l z = 0 , 4 ~  dln~ 2; ( 6 . 1 )  

0,8hD ( 6 . 2 )  
8 = ( u  - 0,4 p62+p 

E q u a t i o n s  ( 5 . 1 ) ,  ( 6 . 1 ) ,  and  ( 6 . 2 )  can  be u s e d  d i r e c t l y  to  a n a l y z e  e l e c t r o d i f f u s i o n  d a t a  f o r  
m i c r o d i s p e r s e  f l u i d s  i n  wh ich  w a l l  s l i p  e f f e c t s  a r e  s e e n .  
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